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Balanced Data and Unbalanced Data of the Strip-Strip-Plot Designs
for Three Multi-Stages of Metal Stamping Processes
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ABSTRACT

For a metal plate battery carrier, its stamping production line composes of five stages:
blanking, forming, flanging, piercing-1 and piercing-2. The stamping processes generate
unexplained inherent variations that result in hole-misalignment in the final stage. In this
paper, the purposes are to utilize experimental designs of three multi-stages processes (multi-
stages DOE), and to extract significant factors from all stages. Full factorial designs are chosen
in which all treatment combinations are under strip-strip-plot structure. Balanced data and
unbalanced data designs are generated with the D-optimal efficiencies at 80% and 69.87%
respectively and implemented in a real stamping processes. An analysis of multiple regression
is used for their generalized model estimators significantly with two cross-stage interaction
effects between stage-2 and stage-3. Both designs provide predicted models in which their
generalized estimators are slightly different. However, with hypothesis testing using t-test, both
predicted models provide no significant difference in their predicted values. Thus, unbalanced
data design, with 24 runs, is more efficiently implemented than balanced data design, with 32

runs, in term of less experimental cost.

KEYWORDS: Strip-Strip-Plot Design, Multi-Stage Processes, Cross-Stage Interaction Effects,
D-optimal
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Introduction and can apply to three multi-stages DOE.

For a plate batter carrier, its stamping
production line composes of five processes
causing inconsistency in quality in the final
process due to accumulated inherit variations.
The cross-stage interaction effects are those
of unexplained causes that can lead to final
product out-of-specification even though all
process parameters are under controlled.

To study inherit cross-stage interactions
or variations of multi-stage processes, strip-
plot design is chosen because of its stripped
structure. The three-way, row and column

and cell are called strip-strip-plot design

However, strip-strip-plot structure generated
a large number of experimental runs.

From our previous work, we generated
several patterns of second-order model within
strip-strip-plot structure with generalized least
square and ordinary least square (GLS-OLS)
equivalent condition. These patterns can be
analyzed with common statistical software
but their runs are still not optimized with
some redundancies.

Literatures on the application of
strip-plot design or strip-strip-plot design has
rarely been seen and most of them were in
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agriculture than in industry. An industrial
research on strip-plot design was performed
in two processes at a battery factory on
the purpose of cost reduction by using half
fractional factorial design in stage-2. The
first strip-strip-plot design was experimented
with three processes in a wafer factory by
using half fractional factorial design in the
stage-3. D-optimal criterion was introduced
into strip-plot designs on the purpose of
reducing experimental runs and was utilized
in two processes (Arnouts, Goos, & Jones,
2010). and three processes (Arnouts, Goos,
& Jones, 2013).

D-optimal strip-strip-plot designs are
generated by an algorithm search that involve
generalized variance-covariance matrix
(Armouts, Goos, & Jones, 2012). Many recent
researches have been worked for similar
designs, split-plot design and split-split-plot
design, especially on second-order split-plot
design searching algorithm (Nguyen & Pham,
2015). The currently interesting researches
are the statistical inference of split-plot and
multi-stratum designs (Trinca & Gillmour,
2017). An interesting search algorithm can
deal with any numbers of stages and provide
six optimal criteria (Borrotti, Sambo, Mylona,
& Gilmour, 2017).

In last three years, our attempts had
worked for D-optimal strip-strip-plot design
for second-order model with output of forty-
five patterns (Tantiphanwadi & Sudasna na
Ayudthya, 2016). Two experiments had been
? dunauaatugauAneenvuuisUszmdlne
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performed in a food factory of pork ham
and macaroni ready-meal (Tantiphanwadi &
Sudasna na Ayudthya, 2017). A recent one
is D-optimal designs based on the second-
order least squares estimator (Gao & Zhou,
2017). To extend our research, balanced data
and unbalanced data strip-strip-plot designs
are performed in stamping production line
to increase product quality with minimum

experimental costs.

Purposes

The research is aimed to implement
three multi-stages DOE in metal stamping
production line in which contains five sub-
processes or stages with minimum number
of experimental runs. The cross-stage
interaction effects should be significantly
extracted from the experiment and included
in predicted model that can provide the
optimum parameters to reach the acceptable
quality.

Another purpose is aimed to studying
both balanced data (OLS-GLS equivalence)
and unbalanced data (GLS) designs. The
test results of them will be compared for

the minimal runs which resulted in less

experimental cost.

Benefit of Research

The effectiveness of three multi-stage
DOE can be evaluated in metal stamping
processes in which its design pattern contain

minimum experimental runs. Experimental
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cost will be more minimized compared with

those of single DOE patterns.

Research Process
1. Stamping Processes

The chosen product is plate battery
carrier with high nonconformance as hole
displacement, measured from the two
lengths of left or right edges to the center
of the hole. The different specification

between left and right displacements should

Blanking
v

Forming 5
v
Flanging

Piercing1

v

Piercing2

q

Figure 1 Stamping process with five stages

be 0.00+0.50 mm. Even though all process
parameters are under control, the inherit
variations are still temporary existing.
Stamping production line composes
of five processes shown in Figure 1. A roll of
metal sheet is pulled into blanking process
which it cuts metal sheet into many small
pieces of plate battery carrier. Then, each
piece will be manually feeded into next
processes as forming, flanging, piercing-1, and

piercing-2 consecutively.

Displacement
between left or
right edges to hole
center are not
equal or out-of-
specification

Plate battery carrier

o
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2. Identifying Generated Inherit Variation
Processes

10 plates are randomly selected at
blanking process and run from process-2
through process-5. In each process, output

critical points are measured. The points that

Table 1 Measured information of critical points

their standard deviations are higher than 0.10
mm are treated as out-of-limit points. In
Table 1, process-2, process-3 and process-5
are significantly chosen because of high
percentage values of 60%, 100% and 100%

respectively.

Process/Critical Points % out-of Limit Points Max.StDev. (6, mm)
1: Blanking 50% 0.103
2: Forming 60% 0.185
3: Flanging 100% 0.165
4: Piercingl 50% 0.159
5: Piercing2 60% 0.155

3. Mathematical Models

3.1 Strip-strip-plot structure

In a strip-strip-plot structure, row
treatments (T) are crossed with column
treatments. Cell treatments occur at each
row-column combination. Let r, c, k are
applied for the number of runs of row,
column and cell respectively. The total runs,
N=Yi_4 Z]-C= 1Ti¢jK Thus, stage-1, stage-2

and stage-3 can be represented by row,
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column and cell respectively. The structure
is guaranteed that cross-interaction effects
of all stages can be observed. The crossing
structure is shown in Table 2.

3.2 Strip-strip-plot model

In a strip-strip-plot structure, the
two-way classification random model with
balanced data or unbalanced data is utilized
(Searle, Casella & McCuloch, 2006).
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Table 2 Crossing structure of three multi-stage processes

Stage-2
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The three multi-stage processes model is

introduced in matrix notation as
Y=XB+ZS5+Zy+e )

where

Y is a N X 1 vector of experimental data,

Bis a p X 1 fixed effect parameters,

Xis a N X p coefficient matrix,

Z, and ZY are row and column incidence

matrice,

d and y are row and column random effect

vectors,

€ is a random effect of cell or N X 1 vector.
It is assumed that random effects,

8~N(0,,031,),y~N(0.,02I.) and &~N(0Oy,oZly),

where 0 and I are zero vectors and identity

matrice are normally distributed around zero

mean vectors. Their variances; of, o3 and

o2 are referred in stage-1, stage-2 and stage-3

respectively.

Another assumption is that their
LoCov(5,e)=0

«y are zero because each of

covariance, cov(6,y) =0, .
and cov(y,g) =0,
them is independent to the others. The strip-
strip-plot model Y, as in equation (1), contains

variance-covariance matrix V = var(Y)

as follows:

V = 63525 + 021, L], + 62Ly (2)

Ih=L®I.Q®L;Z;=1,®1.®1 and
=1,®1.® 1. (3)

V\/here 1 and I are as follows:

1a= l \ .| and @

1 0 0 1 0 0

0 1 0

I = 0 1 O =1 :
0 0 1, 0 0 1,
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10 0
and Iy = O 1 0 (5)
0 0 1,

. . ag a%,
variance ratio, ng = p andn, = o
introduced in matrix notation as

V = 62(nsZsZs +nyZ L, + Iy) (6)

The general mixed model Y, as
equation (1), contains its generalized least-
square (GLS) estimator {3 as

Bous = X'VIX)TIX'V-lY (7)

with its variance-covariance matrix
cov(B) = (X'V1xX)~! (8)

3.3 D-optimal criteria

Strip-Strip-plot structure produces a
large number of runs. In order to reduce
unnecessary runs, D-optimal criteria
is introduced. The criteria utilizes the
determinant of design information matrix
(M = X'V'X) to determine the number of
runs. The design efficiency, Deff, is as follows
(Borkowski, 2015):

Iy— 1/p
Doge = 100 (%) (9)

p is the number of parameters and N is total
runs.

Balancing and orthogonal properties
are the key characteristics that will determine
the quality of any design. The more of these
properties exist, the more efficiency in the
designs.

E dunauaatugauAneenvuuisUszmdlne
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3.4 Factorial design within strip-
strip-plot structure

For stamping process, the fitted

model is accompanied by first order multiple

regression model, thus the strip-strip-plot

model for three-stage processes is as follows:

Y=XB+Zs8+Zy+e (10)

The expansion of the model with six

factors will be
XB =Bo

+B1x1 + B2x2 + B12x1X7 ... stage-1 effects

+B3x3 + Baxs + PB3ax3xy ... stage-2 effects

+B5x5 + Bexg + BseXsXg ... stage-1 effects

+B13x1x3 + Brax1xs + B23x2x3 + P2ax2xy

... stage-1xstage-2 effects

+B15x1%5 + B1eX1X6 + B2sX2xs + B2eX2X6

... stage-1xstage-3 effects

+PB35x3x5 + B3sX3X6 + Pasxexs + PasXaxe

... stage-2xstage-3 effects (11)

The predicted model Y contains all stage
effects of main, within-stage interaction and

cross-stage interaction effects.

4. Experiment Methods
4.1 Constructing experimental

design

4.1.1 Chosen processes, factors
and level

Three critical processes, that
consist of forming (stage-1), flanging (stage-2)
and piercing? (stage-3), respectively, are

chosen to perform three multi-stage
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experiment with full factorial design for all
stages. All stage factors are assigned with two
levels of -1, low, and 1, high. They are defined
as A and B for die height and slide speed of

forming process, C and D for die height and
slide speed of flanging process and E and F
for die height and slide speed of piercing2,

respectively.

Table 3 Full factorial strip-strip-plot design with 64 runs, D_, = 100%

Flanging

D CD CD €D
=141 3 1 i 11

o o -t on

E = £ =

o o o o

R R kT R

o a- a- a
A B FF EF EF FF
Hpel A1 33 4] =11 1 <1
11 2 1 1 1
1-1 1 -1 1-1 144
i 4 11 11 {4
1 A1 33 4] =11 1 <1
o 11 i -1 1 1 1
= 1.4 1-1 1-1 14
£ 14 11 11 11
A B=1 11 T ] =11 ] <1
11 i 1 -1 1 -
1-1 1 -1 1-1 14
14 11 11 {4
11 140 3 4 =11 =] <1
=1, "1 3 1 =1 1 =]
1-1 { -1 1-1 14
11 11 11 14

4.1.2 Balanced data pattern
of factorial design within strip-strip-plot
structure

For balanced data, cell or stage-3
The

symmetry of data structure will provide

will contain equal number of runs.

balancing and orthogonal properties design
which its information matrix M is high enough

compared to our acceptance level.

In the case of utilizing full
factorial design, each stage contains 2% = 4
runs. Then, for all three chosen stages, all
combinations are 4 X 4 X 4 = 64 runs.
The design will contain fully balancing and
orthogonal properties with design efficiency
Deff is 100%. The cross pattern of all sixty-

four runs are shown in Table 3.
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Unfortunately, the sixty-four
runs acquire high experimental cost, thus
unnecessary runs have to be eliminated.
According to observation, all cells, or stage-3,

contain the same four treatments. So, we

will reduce some treatments in stage-3 only.
This means that the balancing and orthogonal
properties still remain in both stage-1 and

stage-2.

Table 4 Full factorial strip-strip-plot design with 32 runs, ng =n, = 62=1 and D =80%

Flanging

CD CD CD CD
-1 -1 11 1-1 11

o o~ o o~

= Zz £ £z

o o o o

ko O O 0

o o (a8 Q.
B X EF EF EF
A =l K] i 1 7 1 11
11 1-1 1-1 1-1
& 11 1-1 a1 11 44
€ 11 1-1 1-1 1 4
S 1-1 1 a1 T 14
1=l 1-1 11 11
11 11 11 4 1 -1
1=l 11 11 11

For stage-3, the balancing
property still remains but the orthogonal is
slightly reduced in accordance with accepted
criteria D_. D-optimal searching algorithm
is utilized to randomly extract from some
unnecessary runs until reaching Deﬁ, > 70%.

Each cell in stage-3 still contain the same

90 dunaNanIUugaNAnYINYULiIUsEmAlNg
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number of runs. With the algorithm, we are
able to generate pattern which the total runs
are reduced from 64 to 32 runs. Together with
using the variance ratios 1, n, and error @2
areallequal to 1.0 resulting in 80% D-efficiency.

The design structure is shown in Table 4.
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Table 5 Full factorial strip-strip-plot design with 24 runs, ns =n, =6z = 1 and D, =69.87%

Flanging
CD CD CD CD
1-1 14 1 11
o 'S o o
g o) k9] g
o &® o o
A B EF EF EF EF
=1 41 1 o 1 1 11
i 4 5 f =i
on
£ 11 11 o, 1 -1
= i 4 1-1 11
S 1-1 1, 4 A A -1
1-1 1-1 11
11 11 11 EN
1, 4 1 <1 1

4.1.3 Unbalanced data pattern
of factorial design within strip-strip-plot
structure

In this case, the further reduction
of unnecessary runs continue in stage-3 only
resulting to some empty cells as shown in
Table 5.

All main effects still contain
both balancing and orthogonal properties.
However, there are quite a few two-way
effects that are missed in both balancing and
orthogonal properties. With the D-optimal
algorithm, we are able to generate pattern
in which the total runs are reduced from 32
to 24 runs. With utilizing the variance ratios
Mg M, and error 0 equaled to 1.0, resulting

in D-efficiency is 69.87%.

4.2 Process and equipment

The real experiment is performed
at the stamping factory, Sangcharoen Tools
Center Co., Ltd., where we can utilize five
stamping sub-processes, real metal sheets
and production people as follows:

e Stamping production line- blanking,
forming, flanging, piercing-1 and piercing-2
processes and machines.

e 110 pieces of battery plate carrier.

e Dimension measurement gauges
and veneer calipers.

e 5 production operators and 1

measurement inspector.
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5. Multiple Regression Analysis experimented on stamping processes. The
Thirty-two runs of balanced data quality characteristic Y, the difference of left
design and twenty-four runs of unbalanced and right displacements, are measured. The

data design with three replicates are quality of data is shown in Figure 2.

Histogram of 32 runs, 24 runs
Normal

2.0-

Variable

—] data32
E=4 data24

-
15 /
Mean StDev N A

0.1087 0.2345 96 i’ _
0.09681 0.2329 72 y W
1.0 - 4 | 5

Density
-

1,

o -

06 04 02 0.0 0.2 0.4 0.6
Data

Probability Plot of 32 runs, 24 runs
Normal - 95% CI

99.9
- \ Mean StDev N AD P
N 0.1087 0.2345 96 0.291 0.604
‘ 0.09681 0.2329 72 0.247 0.746
ag -
et
5
v 50-
|
@
(o'
10 -
Variable
1 ¢ data32
— B — data24
01 T f T I |
-1.0 -0.5 0.0 0.5 1.0

Data

Figure 2 Histograms and probability plots of experimental data, 32 runs and 24 runs.
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The probability plots at 95% confident
level of balanced data and unbalanced
data designs contain p-values of 0.604 and
0.746 that are higher than critical p-value of
0.05. These mean that both experiments
provide data which are in the same normal
distributions. In accordance with histograms,
both of their means, 0.1087 mm. and 0.0968
mm. respectively, and standard deviations,
0.2345 mm. and 0.2309 mm. respectively, are
slightly different resulted that experimental

data contain both properties of accuracy and
precision.

Model estimation f of multiple
regression analysis, is obtained from equation
(7), By = X'VIX)'X'VTY.  According to
balanced data pattern of 32 runs, the

generalize estimator {3, . is equivalent to the

GLS

os- 1hen we can utilize

standard software, such as minitab 17, to

ordinary estimator 8

perform computation in which its result is

shown in Table 6.

Table 6 # Model estimation of balanced data design 32 runs

B Model Estimation

Stage Variable Regression Coefficient P-value
Const 0.1088 0.0000
1 A -0.0117 0.6223
1 B -0.0063 0.7917
2 C -0.0275 0.3157
2 D -0.0002 0.9930
3 E -0.0541 0.0648
3 F -0.0121 0.6099
2x3 CF 0.0798 0.0190
2x3 DE -0.0605 0.0392
3 EF 0.0567 0.0405
ANOVA table
Effects df MS F P-value
Main 6 0.0454 0.85 0.536
Two- 3 0.1926 3.6 0.017
way
Errors 86 0.0535
Total 95
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There are two cross-stage interaction
effects that are statistically significant with
p-value equal to 0.05. CF, flanging die
height interacted with piercing-2 slide speed,
whereas DE, flanging slide speed interacted
with piercing-2 die height. This means that
both flanging parameters provide impact to
the next stage piercing-2 factors. Another
interaction effect is within-stage interaction
effect EF, piercing-2 die height interacted with

piercing-2 slide speed. These significant cross-

stages effects will be included into predicted
model which will provide more accuracy into
its optimized model.

For unbalanced data pattern of
24 runs, the generalized estimator, GGLS =
X'VIX)X'VY, is performed specially with
coding in SAS software or manual calculation
in excel worksheet. Our calculation of the
24-runs GLS estimators, compared with 32-

runs estimators, are shown in Table 7.

Table 7 § Model estimators of balanced data 32-runs and of unbalanced data 24 runs

. B of balanced | B of unbalanced
Valaioles ¢ 32-runs ¥ 24-runs
Const 0.1088 0.1027
A -0.0117 -0.0310
B -0.0063 -0.0100
C -0.0275 -0.0533
D -0.0002 -0.0040
E -0.0541 -0.0650
F -0.0121 -0.0317
CF 0.0798 0.0918
DE -0.0605 -0.0125
EF 0.0567 0.0696

Both of the estimators are slightly
different in magnitudes, thus their predicted
models Y's will provide values which are

slightly different too. For our target, the
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different displacements, should be zero.
Five optimized runs are predicted by these
two predicted models with their predicted

displacements, ¥'s, as shown in Table 8.
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Table 8 Optimized runs with target = 0 and their predicted values

9]

E Run1 Run2 Run3 Run4d Run5

1]

©

(a1

A 1 0 0 0.2 0.5

B 1 0 0 0 0.5

G -1 0 1 1 0.5

D =1 0 0 0 0.5

E 1 0 05 0.5 0.5

F -1 0 0 0 0.5
Y-32 0.1601 0.1088 0.0543 D:0519 0.0719
Y-24 0.1204 0.1027 0.0169 0.0107 0.0424

Two-Sample T-Test and Cl: y32, y24

Two—-sample T for y32 wvs y24

N Mean StDev SE Mean
y32 5 0.0894 0.0456 0.020
yv24 5 0.058¢6 0.0501 0.022

Difference = p (y32) — p (y24)
Estimate for difference: 0.0308
95% CI for difference: (-0.0409, 0.1024)

T-Test of difference

=0 (vs #):

T-Value = 1.01 P-Value = 0.344 DF = 7

Figure 3 Hypothesis t-test between predicted values Y of balanced data 32 runs and unbalanced

data, 24 runs

Both optimized runs from their models
are able to get closed to zero value. However
the predicted values from unbalanced data
design (24-runs) are slightly closer to zero

than those of balanced data design (32-runs).

Thus, a hypothesis t-test is performed and
its result shows that there are no statistical
difference in estimators from both designs.
The t-test result from minitab 17 is shown in

Figure 3 in which p-value is 0.344.

o
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Conclusion

In this paper, we discuss factorial
design within strip-strip-plot structure for
three multi-stage stamping processes in order
to reduce accumulated variations at final
stage. Two designs of balanced data with
32 runs and unbalanced data with 24 runs
are generated with the D-optimal criteria of
design efficiency, Deff, at 80% and 69.87%
respectively. The predicted models of both
designs are able to extract all stage’ effects
of main, within-stage interaction and cross-
stage interaction effects significantly.

Five optimized runs with their target,
equaled zero, are predicted from both
predicted models. Both of their means
are evaluated by hypothesis t-test which
interprets that there are no significant
difference. This means that, we can confirm
experimental runs with unbalanced data
design of 24 runs in which some experimental
cost is saved 25% than that of 32 runs.

Even though unbalanced data design
can provide us minimal runs with acceptable
efficiency, such as D-optimal criteria, its
mathematical difficulty is the obstacle to
widely utilization. Furthermore, there are
many efficiency criteria that are still under
researched, such as D-optimal, A-optimal,

G-optimal, etc.
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Recommendation

Unbalanced data designs with the
optimal criteria will benefit to optimize
number of experimental runs for multi-stages
DOE which takes advantages both analysis
model and minimal number of runs than
those of single DOE. To get multi-stages DOE
patterns and generalized estimators, one
has to create them in excel worksheet or
SAS software coding. Further researches will
benefit in developing unbalanced data design
patterns in different kinds of designs, such as
mixture design, extending number of stages
and software developing for generalized

estimator calculation.
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